Aging affects the in vivo regenerative potential of human mesoangioblasts
نویسندگان
چکیده
Sarcopenia is the age-related loss of muscle mass, strength, and function. Although the role of human satellite cells (SCs) as adult skeletal muscle stem cells has been deeply investigated, little is known about the impact of aging on muscle interstitial stem cells. Here, we isolated the non-SC CD56- fraction from human muscle biopsies of young and elderly subjects. The elderly interstitial cell population contained a higher number of CD15+ and PDGFRα+ cells when compared to young samples. In addition, we found that the CD56- /ALP+ cells were well represented as a multipotent stem cell population inside the CD56- fraction. CD56- /ALP+ /CD15- cells were clonogenic, and since they were myogenic and expressed NG2, α-SMA and PDGFRβ can be considered mesoangioblasts (MABs). Interestingly, elderly MABs displayed a dramatic impairment in the myogenic differentiation ability in vitro and when transplanted in dystrophic immunodeficient Sgcb-null Rag2-null γc-null mice. In addition, elderly MABs proliferated less, but yet retained other multilineage capabilities. Overall, our results indicate that aging negatively impacted on the regenerative potential of MABs and this should be carefully considered for potential therapeutic applications of MABs.
منابع مشابه
Human term placental cells: phenotype, properties and new avenues in regenerative medicine
The human placenta has long been the subject of scientific interest due to the important roles which it performs during pregnancy in sustaining the fetus and maintaining fetomaternal tolerance. More recently, however, researchers have begun to investigate the possibility that the placenta’s utility may extend beyond fetal development to act as a source of cells with clinically relevant properti...
متن کاملHuman iPSC-derived mesoangioblasts, like their tissue-derived counterparts, suppress T cell proliferation through IDO- and PGE-2-dependent pathways
Human mesoangioblasts are currently in a phase I/II clinical trial for the treatment of patients with Duchenne muscular dystrophy. However, limitations associated with the finite life span of these cells combined with the significant numbers of mesoangioblasts required to treat all of the skeletal muscles in these patients restricts their therapeutic potential. Induced pluripotent stem cell (iP...
متن کاملPretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention
Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...
متن کاملMitochondria determine the differentiation potential of cardiac mesoangioblasts.
An understanding of cardiac progenitor cell biology would facilitate their therapeutic potential for cardiomyocyte restoration and functional heart repair. Our previous studies identified cardiac mesoangioblasts as precommitted progenitor cells from the postnatal heart, which can be expanded in vitro and efficiently differentiated in vitro and in vivo to contribute new myocardium after injury.B...
متن کاملFusion-independent expression of functional ACh receptors in mouse mesoangioblast stem cells contacting muscle cells.
Mesoangioblasts are vessel-associated fetal stem cells that can be induced to differentiate into skeletal muscle, both in vitro and in vivo. Whether this is due to fusion or to transdifferentiation into bona fide satellite cells is still an open question, for mesoangioblasts as well as for other types of stem cells. The early steps of satellite cell myogenic differentiation involve MyoD activat...
متن کامل